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* 1. Introduction

This paper presents an implementation of a new motion planning algorithm for general
robot manipulators moving among three-dimensional polyhedral obstacles. The algo-
rithm has a number of advantages: it is simple to implement. it is fast for manipulators

with few degrees of freedom, it can deal with manipulators having many degrees of free-
dom (including redundant manipulators), and it can deal with cluttered environments

and non-convex polyhedral obstacles. An examples of a path obtained from an imple-

mentation of the algorithm is shown in Figure 1.

The ability to automatically plan collision-free motions for a manipulator given
geometric models of the manipulator and the task is one of the capabilities required to

achieve task-level robot programming 115i. Task-level programming is one of the principal

goals of research in robotics. It is the ability to specify the robot motions required to
achieve a task in terms of task-level commands, such as "Insert pin-A in hole-B", rather
than robot-level commands, such as "Move to 0.1,0.35,1.6".

The motion-planning problem, in its simplest form, is to find a path from a specified
starting robot configuration to a specified goal configuration that avoids collisions with a

known set of stationary obstacles. Note that this problem is significantly different from,
an(c luite t bit harw'r th- i, the collision detection problem: detecting whether a known

rob, conf guration or a :)ath would cause a coll,-ion J. 4. Motion planning is also
difft ,ent fro)m on-line obslacle avoidance modifying a known robot path so as to avoid

unf, reseen obstacle- 6, 9. 10, 11'.

Althoaigh general-pu-pose task-level programming is still niany years away, some
of t~ie techniques developed for task-level programming are relevant to existing robot
applications. There is, for example, increasing emphasis among major robot users on
developing techniques for off-line programming, by human programmers, using CAD

models of the manipulator and the task. In many of these applications motion plan-
ning plays a central role. Arc welding is a good example; specifying robot paths for
welding along complex three-dimensional paths is a time- -nsuming and tedious process.

The development of practical motion-planning algorithms could reduce significantly the

programming time for these applications.

A great deal of research has been devoted to the motion-planning problem within
the last five to eight years, e.g., [2, 3, 5, 7, 8, 12, 13, 14, 16, 17. 19, 201. But, few of these

methods are simple enough and powerful enough to be practical. Practical algorithms
are particularly scarce for manipulators made up of revolute joints, the most popular
type of industrial robot. I know of only two previous motion-planning algorithms that
are both efficient and reasonably general for revolute maniptulators with three or more

degrees of freedom [2, 7J. Brooks's algorithm 12 has demonstrated impressive results,

but is fairly complex. Faverjon's algorithm 7, on the other hand, is appealingly simple.
The basic approach of the algorithm described here is closely related to the method
described by Faverjon. Many of the details of the present algorithm, however, especially
the treatment of three-dimensional constraints and the free space representation, are new

and more general
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Figure 1. (a) Sample configurations along a path for all six links of a Unimation Puma manipulator
obtained using the algorithm described here. The total planning time on a Symbolics 3600 lisp
Machine without floating-point hardware was 40 seconds. The incremental cost for planning
another path in the same environment is approximately 2 seconds.
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a)

Figu-e 2 (a) A closeup of the initial configuration of the manipulator for the path in Figure lb

(from a different viewpoint) (b) A closeup of the final configuration of the manipulator for the

path in Figure lb Note that the full pol~ hdral descriptions of the arm and end-effector are

used in the algorit hrn

&INo *1 i)
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The approach taken in this algorithm is similar to that of !7, 8, 12, 13' in that it

involves quantizing joint angles. It differs in this respect from exact algorithms such as
:17, 19i . On the other hand. the quantization approach lends itself readily to efficient
computer implementation.

The purpose of this paper is to show that motion planning for general manipulators
can be both simple and relatively efficient in most practical cases. There is no reason
why motion planning should be any less practical than computing renderings of three
dimensional solids in computer graphics. In both cases, there are many simple numerical

computations that can benefit from hardware support. In fact, it is worth noting that

in the examples in Figure 1 it took longer to compute the hidden-surface displays in the

figures than to compute the paths.

2. The Basic Approach: Slice Projection

The configuration of a moving object is any set of parameters that completely specify the
position of every point on the object. Configuration space (C-space) is the space of con-

figurations of a moving object The set of joint angles of a robot m,.nipulator constitute

a configuration. Therefore, a robot's joint space is a configuration -pace. Tle cart sian
parameters of the robot's end effec'or, on tht other hand, dc not usually constit te a
configuration because of the multip;icity of so utions to a rot ot's iverse kii,'mati, It
is possible to map the obstacles in t'ie robot's workspace int, its c4,nfigurati.,n spa '3.

4, 5. 13, 14. These C..,pace obstacle- represent those configur ,tions of the m, ving (. ject
that would cause collisions. F'ree space is defied to be the tomplf-ment of 1he C- pare

obstacles.

Motion planning requires an explicit characterization of the robot's free space. The

characterization may not be complete. for example, it may cover only a subset of the
free space. But, without a characterization of the free space, one is reduced to trial
and error methods to find a path. In this paper we show how to compute approximate
characterizations of the free space for simple manipulators. B) simple manipulators %e

mean manipulators composed of a non-branching sequence of links connected by either
revolute or prismatic joints (see '18' for a treatment of the kinematics of simple manip-

ulators). We restrict the position of link zero of a simple manipulator to be fixed. Most
industrial manipulators (not including parallel-jaw grippers) are simple manipulators in

this sense.

The C-space obstacles for a manipulator with n joints are, in general, n-dimensional

volumes. Let C denote an n dimensional C-space obstacle for a manipulator with n joint .

We represent approximations of C by the union of n - I dimensional slice projections 13.

14'. Each n - I dimensional configuration in a slice projection of C represents a range
of n dimensional configurations (differing only in the value of a single joint parameter)
that intersects C.

A slice projection of an n dimensional C-space obstacle is defined by a range of valhes
for one of the defining parameters of the C-space and an n - I dimensional volume It

the q = (qI.. ., q,) denote a configuration. where each q, is a joint parameter. ea1h of
which measures either angular displacement (for revolute joints) or linear disphcelQ:It
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Figure 3. Slice Projection of a three-dimensional obstacle into a list of two-dimensional slices
that are in turn represented by one-dimensional slices.

(for prismatic joints). Let {q q3 e r,j d} he the set of all configurations for which
O qj E Ia.3 and let 7r, be a projection operator such that

nq ,.,q,) - (q .. q,- ,,q 1 .,, . .,qn)

Then, the slice projection of the obstacle & for values of q) io, 3 is

nC"{q q, e_ o,Jj})

• The definition of slice projection is illustrated in Figure ".In the example above, joint j.
" above is called the slice joint while the other joint'. are kniown as free joints.

34

" Note that a slice projection is a conservative approximation of a segment of an n
dimensional C-space obstacle. An approximation of the full obstacle is built as the union
of a number of n - 1 dimensional slice projections, each fr a different range of values of
the same joint parameter (Figure 3) Each of the n - 1 dimensional slice projections, in

turn, can be approximated by the union of n - 2 dimensial slice projections and so on,
until we have a union of one dimensional volumes, that is. linear ranges. This process is
illustrated graphically in Figure 3. Note that the slice prcjection can be continued one
more step until only zero dimensional volumes (points) remain, but this is wasteful.

Consider a simple two-link planar manipulator whose joint parameters are q and

qd- C-space obstacles for such a manipular are two diflnsitnal The one dimensional
slice projection of a C-space odie stacl i' r oj e ti , is s, fo se of linear ranges { ,
ufor q2 . The ranges must be such that. if there exists a value of q. call it i, and a value

ilu [trt], call it y, for which 3 C. then is in one of the R, (Figure 3).

more~~~~~~~ ~ ~ ~ ~ ste uni onyzr iesoa oue pins ean u hsiatfl
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Figure 4. (a) Two link revolute manipulator and r ,)stacles. (b) TV. dimensional C space ith
obstacles approximated by a list of one dimensional slice projections (shown dark). The i Lial
and final positions of the manipulator are shown in the input space and the C-space.

A representation of a configuration space with obstacles is illustrated in Figure 4b
for the two link manipulator and obstacles shown in Figure 4a. The actual configuration
space is the surface of a torus since the top and bottom edge of the diagram coincide
(0 = 27r), as do the left and right edge. The obstacles are approximated as a set of q2
ranges (shown dark) for a set of values of q. The resolution is 2 degrees along the q,
axis.

If the manipulator has three links, its configuration space can be constructed as
follows:

1. Ignore links beyond link 1. Find the ranges of legal values of q, by considering
rotations of link I around the fixed base.

2. Sample the legal range of q, at the specified resolution. Do steps 3 through 5 for
each of the value ranges of qi.

3. Ignore links beyond link 2. Find the ranges of legal values of q2 by considerinr
rotating link 2 around the positions of joint 2 determined by the current value range
of q1.
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4. Sample the legal range of q2 at the specified resolution. Do step 5 for each of these
value ranges of q2.

5. Find the ranges of legal values of qs by considering rotating link 3 around the position
of joint 3 determined by the current value ranges of q, and q2.

Some sample slices from a configuration space computed in this way can be seen in Figure

5.

Note that the process described above is an instance of a simple recursive process:

To compute C-space(i):

I . Ignore links beyond link i. Find the ranges of legal values of q, by considering
rotating link i around the positions of joint i determined by the current value ranges

of q ,. .. ,q,-I-

2. If I = n then stop, else sample the legal range of q, at the specified resolution.
- Compute C-space(i -- 1) for each of these value ranges of q,.

Observe that the basic computation to be done is that of determining the ranges of
legal values for a joint parameter given ranges of values of the previous joints. This
computation is the subject of Section 3.

The recursive nature of the C-space computation calls for a recursive data structure
to represent the C-space. The current implementation uses a tree whose depth is n - 1,
where n is the number of joints, and whose branching f- -tor is the number of intervals
into which the legal joint parameter range for each joint is divided (Figure 6). The leaves
of the tree are ranges of legal (or forbidden) values for the joint parameter n. Many of
the internal nodes in the tree will have no descendants because they produce a collision
of some link i < n.

The main advantage of a representation method built on recursive slice projection
is its simplicity. All operations on the representation boil down to dealing with linear
ranges, for which very simple and efficient implementations are possible. The disadvan-
tages are the loss of accuracy, and the rapid increase of storage and processing time

with dimensionality of the C-space. Contrast this approach with one that represents the
boundaries of the obstacles by their defining equations 14, 51. Using the defining equations
is cleaner and more accurate, but the algorithms for dealing with interactions between
obstacle boundaries are very complex. I believe that the simplicity of slice projection
outweighs its drawbacks. These drawbacks can be significantly reduced by exercising
care in the implementation of the algorithms.

4. J%
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"h-r'- ur.% - 'ttuuts-t he - ) ,-ads it a retLYSve data structure: an n-leve]

.- ~p r-enz "'Fa! r~n~e- t nfi.-,at ions for tht- robot manipulator.

3. Slice Projections for Polygons

Ih ti kf-~ N II r) our approat h IS (Orflpu1t Mrg onec dimensional slice projections of C-space
-I "I- That;1 I determirine the rang~e of forbidden ... ues of one joint parameter.

E '.er rargt- Jf ' atue- for all -pre~iO11,4joini parameters. We will illustrate how these

ra e r a'. ,rinput ed h~ ri..!iderinF the case of planar revolute manipulators and
t) I et- %t "ilfir- Thr io pr .Heroi informalk and then derive the solution from

* 3.1. A gemntetric view

A-'mlat J"ir.1 k i-~re% ,lite jwit I, t he free joint for a oiie-ciinensiorial slice projection

arid that itie iU Pnrts ;ire fixed at knownr values Note that we assume, for now.

thfat t he' pre-% ioiji port ,are fixed a! trz gI, % alues rather t han ranges of v'alues; we will

-t. Int-,w i. .' .i h .' t,' relaix t hi, re't rie i o %e requiri t hat the configuration of the
hr~i k I ink, I~v f-.. that yi,) link ini'rects an obsta -le. This is guaranteed by the
rer( tir, 0 t te a%&1 in ri r i tn 2 enthese assurmpt ions, we need to find

UW
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Figure 7. Contact conditions for computing one dimensional slice projections: (a) Vertex of
obstacle and edge of link (b) vertex of link and edge of obstacle. The circles indicate the path
of the vertices as the link rotates around the specified joint.

the ranges of values of the single joint parameter q* that are forbidden by the presence
of objects in the workspace.

4The ranges of forbidden values for qk will be bounded by angles where link k is
just touching an obstacle. For polygonal links moving among polygonal Qbstacles, the
extremal contacts happen when a vertex of one object is in contact with an edge of
another object. Therefore, the first step in computing the forbidden ranges for q, is to
identify those critical values of q9, for which some obstacle vertex is in contact with a link
edge or some link vertex is in contact with an obstacle edge (Figure 7).

The link is constrained to rotate about its joint, therefore every point on the link
follows a circular path when the link rotates. The link vertices, in particular, are con-
strained to known circular paths. The intersection of these paths with obstacle edges
determine some of the critical values of qt, for example, B in Figure 7. As the link
rotates, the obstacle vertices also follow known circular paths relative to the link. The
intersection of these circles with link edges determine the remaining critical values for
qk, for example, A in Figure 7.

Determining whether a vertex and an edge segment can intersect requires first in-
tersecting the circle traced out by the vertex and the infinite line supporting the edge

.to compute the potential intersection points. The existence of such an intersection is
a necessary condition for a contact between link and obstacle, but it is not sufficient.
Three additional constraints must hold (Figure 8): in-edge constraint - the intersection
point must be within the finite edge segment, not just the the line supporting the edge;
orientation constraint - the orientation of the edges at the potential contact must hb(
compatible, that is, the edges that define the contact vertex must both be outside of the
contact edge; reachability constraint - for non-convex objects, there must not be other

contacts that prevent reaching this point.
The in-edge constraint can be tested trivially given the potential contact point and

the endpoints of the contact edge. Since we know that the contact point is on the line
of the edge, all that remains to be determined is whether it lies between the endpoints

IPl
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Figure 8. Given the intersection of a vertex circle and an edge line, the following conditions
must be met for a feasible contact: (a) The contact must be in the edge segment, contact 1
satisfies this but 1V does not (b) The edges that define the contact vertex must both be outside
of the contact edge, contact I satisfies this but contact 2 does not. (c) The contact must be
reachable, contact I satisfies this, but contact 3 does not (this condition is only relevant for
non-convex objects).

of the edge. This can be done by ensuring that the z and y coordinates of the contact
point are within the range of x and y coordinates defined by the edge endpoints. Note
that for contacts involving link edges and obstacle vertices, the position of the endpoints
of the link edge must be rotated around the joint position by the computed value of the
joint angle at the contact.

The orientation constraint can also be tested simply. All that is required is that the
two edges forming the contact vertex be on the outside of the contact edge. Polygon
edges are typically oriented so that they revolve in a counterclockwise direction about
the boundary. Therefore. the outside of the polygon is on the right of the edge as we
traverse the boundary. Given this, the feasibility of a contact can be verified simply by
comparing the absolute orientations of the edges involved in the contact.

The reachability constraint, on the other hand, i -quires examining all the contacts
of the link with a given obstacle that satisfy the first two constraints. For each contact

angle q we determine whether values of q, greater than q cause collision or whether values
less than q cause collision (Section 3.2). The contact angles together with the collision

directions can be merged to form the ranges of forbidden values for q,. This process is
illustrated in Figure 9.

3.2. Derivation using C-surfaces

The two types of contacts (vertex-edge and edge-vertex) give rise to the two basic type
of C-space boundary (hyper-)surfaces '3, 4, 5, 14'. One type of C-surface (type A)
characterizes the configuration of the moving object for which a vertex of the stationary

_ obstacle is in contact with the infinite line supporting an edge of the moving object The
other (typf B) characterizes the configuration of the mo, ng object for which the infinite

Pr 'R 0 A .



12

Figure 9. Constructing ranges of forbidden values using the potential contact angles and the
collision directions.

line supporting an edge of the stationary obstacle is in contact with a vertex of the
moving object. The equations of such surfaces are parameterized by the configuration

parameters of the moving object. For planar polygons, z, y, 9 can be used as configuration

parameters; for manipulators, the q, are the configuration parameters.

For a revolute joint, choose the coordinate system to be located at the joint. The
coordinate representation of all of the vectors will be relative to this coordinate system.
We represent a line supporting an edge by an equation of the form: nx- -d = 0. Where n

is the (outward pointing) unit vector that is normal to the line and d is the perpendicular

distance to the edge from the origin. The condition for a vertex v being in contact with
such a line is simply n- v -- d = 0.

For a type B contact, we are given a link vertex whose initial position vector (for

qi -- 0) is v and an obstacle edge whose line equation is n • x -4- d = 0. If the link angle

is qk,. the coordinates of the rotated link vertex are:

V' = (v, cos qk - v sin qk, vz sin qk + r cos qk)

Substituting into the plane equation yields a simple trigonometric equation in qk (all the

other terms are constant):

(nzv, + nv,)cosqk + (nv - n~v,)sinqk d=0 (1)
From the definition of the scalar and vector product, we have that

n, v, - n. V,, = IIV!; cos€, nv, - n,%v = v' sine

where 0 is the angle between n and v. From this, it is clear that the C-surface eqution

is merely

v' cos(qk - )= -d

The solution to this equation is:

z1i
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Figure 10. Illustration of terms used in (1) - (4)

qk = cos-, i ) + (2)

Figure 10 illustrates this situation. There is one such C-surface for each combination of
link vertex and obstacle edge. Of course, only convex vertices need be considered; no
contact is possible at a concave vertex.

Using the same notation, except that the edge is a link edge and the vertex an
obstacle vertex, the equation for a type A C-surface is

(n~v, + n~v,) cosqk - (n~v, - n~v.) sin qk + d = 0 (3)

The only difference is the sign of the coefficient of sin qk, this arises from the fact that we
are thinking of the obstacle vertex as counter-rotating while the link stands still. That
is, the direction of rotation of the vertex is the opposite of qt; this changes the sign of
the sine of the angle. The solution to this equation is:

q=cos- (A) _ q, (4)

There is one such C-surface for each combination of (convex) obstacle vertex and link
edge.

Note that there are generally two solutions to each of the equations (arising from the
arccosine) since they correspond to intersections of a circle traced out by a vertex and an
infinite line supporting an edge. These solutions, however, do not necessarily represent
feasible contacts between the link and an obstacle. The remaining constraints illustrated
in Figure 8 must also be satisfied. Of course, when the ma& ,tude of the argument to
the arccosine is greater than one, this indicates an infeasible contact, that is, the line is
beyond the reach of the vertex.

The in-edge constraint can be checked, as described before, by computing the co-
ordinates of the intersection point and the positions of the edge endpoints, given the
computed values of qk.
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Figure 11. Testing the orientation constraint for polygonal contact

The solutions obtained from equations (2) and (4) must also satisfy the orientation
constraint. One way of testing this constraint is by ensuring that the polygon edges that

intersect at the contact vertex both point outward from the contact edge. If el and e2
are the edge vectors pointing away from the vertex (Figure 11), thea the orientation

constraint boils down to

sign(n • el) > 0, sign(n • e2) >_ 0

where sign(z) = z/'zl for z 0 and 0 otherwise.

The reachability constraint is handled as described in Section 3.2. To do that, we
must be able to tell whether an increase in qh: will move the contact away from the contact
or further into contact. This can be done by computing the derivative of Eqs. (1) and
(2). The left hand side of these equations is a measure of the perpendicular distance of
a vertex from an edge. The sign of the derivative of this distance with respect to qJ, will
indicate whether a change in q, will move further into contact or away. For example, the
sign of the derivative of the distance for a type B contact (Eq. (1)) is determined by the
sign of - sin(qk + 0) evaluated at the value of qk that gives rise to contact.

3.3. The effect of ranges of joint angles

Our discussion thus far has been limited to situations where all the joints except the
last have known fixed values. The definition of one-dimensional slice projections allows
all the joints, save one free joint, to be within a range, not just a single value. We can
readily convert, the slice projection problem (for ranges of joint values) to the simpler
crossection projection problem (for single joint values) we have already discussed. The
idea is to replace the shape of the link under consideration by the area it sweeps out when
the joints defining the slice move within their specified value ranges 13, 141. Any safe
placement of the expanded link represents a range of legal displacements of the original
link within the specified joint ranges.

In most cases, instead of computing the exact swept volumes, we can use a very
simple approximation method. Assume the manipulator is positioned at the configuration

a *~...( .~ ***~.!
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Figure 12. The kth manipulator link can be grown by a radius 6bh: the maximum cartesian
displacement of any point on the link in response to joint displacements c, for i < k.

defined by the midpoint of all the joint value ranges specified for the slice projection.
Compute the magnitude, 6k, of the largest cartesian displacement of any point on link k
in response to any displacement within the specified range of joint values. If we "grow"
each link by its corresponding radius 6b, the grown link includes the swept area.

A polygonal approximation to the grown link can be obtained by computing the
"set sum" or "Minkowski sum" of the link and a polygon enclosing a circle of radius 6
141. An example of such an grown manipulator can be seen in Figure 12.

We can illustrate this approach by considering how to compute 6k for a planar
manipulator composed of n revolute joints. The motion of a joint affects the displacement
of all subsequent links. Therefore, the maximum cartesian displacement of each link
depends on the maximum total distance from any point on a link to the base joint and
on the maximum angular displacement of the link. The maximum distance of points on
link k is the sum of the distances between all previous joints plus the distance of any
point on link k from joint k. The angular displacement of link k in a planar revolute
manipulator is also the sum of the angular displacements of all the previous joints. Given
the distance d and the angle 0, the magnitude of the displacement (chord of a circle) is

/2(1 - cos 8).

Let the allowed angle range for q, be ak -± (,; let rk be the maximum distance of
any point on link k from joint k; and let Ik be the distance from joint k to joint k + I
The value of 6k is

P Ik
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Because the last link's motion is never quantized when computing the C-space, we have

that: e= 0. This value of 6k is very conservative; it is the largest displacement anywhere

in the workspace. In fact, it corresponds to the displacement in a link when all the pre-

vious links are fully outstretched, that is, all the c = O,J < k. Different configurations
would yield smaller values of bk.

In Figure 12 the relevant parameter values are: ql = 2*,C2 = 2',c3 = 0,10 = 0, 11

17.0,12 = 17.0, r, = 18.44, f2 = 17.26, f3 = 5.385. Therefore, the values of the bk are:

b, = 0.644, b2 = 2.39, b3 = 2.749. Note the growth in the value of 6 k as the distance from

the base increases. Because of this, one might want to choose a finer quantization for

joints associated with long links near the base, for example, joint two in our example.

In some applications, if the Eh are small, it may be preferable to ignore the effect of

small ck during planning and simply check the resulting path for collisions. Of course.

if the joint ranges ck are large, these gross approximation may be too conservative and

the exact swept volume should be used.

3.4. Prismatic joints

The discussion above has concentrated on revolute joints but the approach is not limited

to them. If any of the joints are prismatic, only the computation of one dimensional

slices will be different and, in fact, it will be simpler.

As before, the key problem is computing the critical value of the joint parameters
for which a link is in contact with an obstacle. These contacts involve contact of a vertex

and an edge. So, as in the case for revolute joints, we need is determine the locus of

motion of link vertices relative to obstacle edges and the locus of motion of obstacle

vertices relative to link edges. For links actuated by revolute joints, we have seen that

the vertices trace out circles. For links actuated by prismatic joints, the points on the

link trace out lines. Potential points of contact occur where the lines defined by the
motion of the vertices intersect the edges. This operation replaces the intersection of
circles and lines in the preceding discussion.

The points of intersection must still satisfy the in-edge, orientation, and reachability

constraints Note that the in-edge constraint must no% be modified to check. not only

that the intersection point is% ithin the fimite edge segment of the polygon, but also that
the contact is within I he ranFe, of motion of the joint.

4. Slice Projections for Polyhedra

The basic approach described in Section 3 carries over directly to three dimensional

manipulators arid obstacles There is ho<,eer one ;ignificant difference there are three

types of contacts possible bete.rI three d iri ien.,ioijal polyhed ra. The three contact ty pes

_+%
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are: (type A) vertex of obstacle and face of link, (type B) vertex of link and face of
obstacle, and (type C) edge of link and edge of obstacle.

Let us consider type B contacts first. Each revolute joint is characterized by an axis
of rotation. As the joint rotates, link vertices trace circles in a plane whose normal is
the joint axis. The intersection of this circle with the plane supporting an obstacle face
defines two candidate points of contact (see the appendix). As in the two-dimensional
case, possible contacts must satisfy three constraints to be feasible: in-face constraint -

the contact must be within the obstacle face. orientation constraint all of the link edges
meeting at the vertex must be outside of the obstacle, and reachability constraint - for
non-convex polyhedra. there must not be any earlier contacts that prevent reaching this
one.

The in-face constraint can be checked using any of the existing algorithms for testing
whether a point is in a polygon. The orientation constraint can be enforced by checking

that the dot products of the face normal with each of the vectors from the contact vertex
to adjacent vertices is positive 15. The reachability constraint is enforced exactly as in
the two-dimensional case by merging the forbidden angle ranges.

Type A contacts are handled analogously to type B contacts except that now the
vertex belongs to an obstacle and the face to a link. The axis of rotation is still that of

the manipulator joint.

Detecting type C contacts require detecting the intersection of a line (supporting
a link edge) rotating about the joint axis and a stationary line (supporting an obstacle
edge). The solution for this case can be found in the appendix. Of course, an intersection
point must be inside both edge segments to be feasible There is also an orientation
constraint which is a bit more difficult to derive than those for type A and B contacts
but not particularly difficult to check (for the derivation, see '5)

* The appendix shows the details of these cornputatiors

5. Free Space Representation

Having obtained a conservative approximation of the C-space obstacles, the free space is
simply the complement of all the obstacles Since the obstacles are ultimately represented
as sets of linear ranges. the complement i, trivial to compute. A two dimensional free
space. for example. will be represented as a list of one dimensional slices. Each slice
represents the ranges of legal values of q. for some small range of values of qi. This is
in itself a reasonably convenient representation of the free space but not very compact.
If we were to try to find paths through the individual slices a great deal of time would
be wasted searching through nearly identical slices A mur, (ompact representation is
called for. one that captures some of the coherence between adjacent slices.

The free space representation used ini the current implementation is made up of
regions. A region is made up out of overlapping ranges from a ;et of adjacent slices
(Figure 13). The area of rommon overlap of all the slices in a region is rectangular and

called the. region's ki rn, IIn practice. %%e re iiire smernu' cMi murn ,,ve.rlap between slices
in the sanif. regiorn to a\1d %.(r. niarr(,% keril
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Figure 13. (a) Region definition for two link C-space. The rectangular regions are the region
kernels. The shaded area shows region R2. (b) Region graph corresponding to the regions
in part A. The link labels indicate the existence of a common boundary in the q1 and/or q2

Free space regions are non-convex and so points within the region may not always be

connectable by a straight line. There is, however, a simple method for moving between
points within the region: move from each point along its slice to the edge of the kernel

and connect these kernel points with a straight line.

To search for a path between points in different regions requires representing the

connectivity of the regions. We build a region graph where the nodes are regions and
the links indicate regions with common boundary. Associated with each region are a

set of links to adjacent regions, each link records the area of overlap. Regions have

neighbors primarily in the q, direction; for these neighbors, the range Of q2 values at the
common region boundary is stored with the link. By construction, regions only have q2

neighbors at the 0 = 2w boundary, anywhere else the region is bounded above and below

by obstacles.
In general, each n dimensional slice is represented as a list of n - I dimensional

slices and one dimensional slices are a list of ranges of joint values. We have seen that

two dimens~onal regions are constructed by joining neighboring or e dimensional !ice-

projections. In principie, we could c(.nstruct three dimension; I regiins by joining n igh-

boring two limensionai regions, and so on. Instead. for thre, dimensional (-spac, i we
%,." simpl. build two dimerional regions for each range of values f tht first joint para .eter

and represerit the connectivity among these regions in the reg on gr. ph (Figu e 14) The
connectivity is determined by detecting overlap between re-ro n k,.nels in i eighb ring
two dimensional slices, that is. slices obtained by incrementing or decrementing the first

joint parameter. When overlap exists, the area of overlap is associated with the corre-
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Figure 14. Region connectivity for three dimensional slices; regions can have neighbors in q,
direction.

sponding link in the region graph. This method is readily extended to n dimensional

slices by considering as neighbors slices obtained by incrementing or decrementing one
of the first n - 2 joint parameters used to define the two dimensional slice.

The main feature of this region representation is that it exploits the coherence of the
free space thus, for example, it does not introduce many arbitrary divisions in the free-
space such as are introduced by octree-type representations [7]. Exploiting the natural

coherence has a number of practical advantages. The main result is the compactness of
the representation: very few regions are required to represent rather complex free spaces.

Another important result is low branching in the region graph: each region has relatively
few neighbors. These characteristics of the representation also make possible some of the

heuristic search technique described in section 7.

6. Searching for a Path in the Region Graph

In this section, I describe a technique for searching a regio- graph, This technique applies
to searching any subset of the C-space; it is not necessary that the complete C-space be

examined before any searching is done. Section 7 describes some heuristic strategies for
limiting what parts of the C-space are actuall) explored.

Path searching is done by an A' search in the region graph from the region containing
the start point to the region containing the goal point. During the search, a list of search
nodes is kept. Each search node is associated with some intermediate region in the region

graph and represents a set of regions connecting the start region to that intermediate

region. For each node, we also keep track of an entry point on the region boundary that
represents the location where the robot path would enter tlie region. When a search

node is expanded by extending the region path to an adjacent region, the entry point
is moved to the closest point on the common boundary between the two regions. The
entry point to the next region becomes the ezit point for the current region.

To carry out the search we must associate with each search node an actual distance

covered and an underestimate of the remaining distance to the goal. We use the distance

i i l ll'r l
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Figure 15. (a) Regions for example in Figure 4 (b) Path found between start (1) and goal (4)
configurations (c) Some intermediate configurations.

between entry points to define the distance between two regions and the underestimate

is the distance between the entry point and the goal. Of course, these distances are

based on differences between the joint parameters modulo 27r. Once having found a list

of regions connecting the start to the goal, the actual path is obtained by connecting the

entry points and exit points of the regions. The entry point of the start region is the

start point and the exit point of the goal region is the goal point.

A typical path found by the algorithm using the simple strategy described above is

shown in Figure 15. The paths tend to be jagged: some simple postprocessing to smooth

the path would be desirable and is currently under investigation. On the other hand,

because of the compactness and low branching of the region representation, searching for

a path tends to be very fast (less than half a second for two dimensional C-spaces)

7. Heuristic Subsets of the C-space

Having built a C-space, it may be searched repeatedly for different paths. Changes to

the environment, however, will cause parts of the C-space to be recomputed. In rapidl

changing environments, it may not be appropriate to compute the complete ('-,pace

since only small sections of the C-space will ever be traversed. This section describes

,,'U '. 1.. ? .
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Figure 16. The first three links of the manipulator of Figure 1 The last three links and the end
effector have been replaced by a simple bounding box.

experience with a number of simple heuristic strategies that help select the subset of the
C-space relevant to a particular path.

7.1 Decoupling the degrees of freedom

The path shown in Figure 1 was computed using two simple heuristics to subset the

C-space: First plan a path for the first 3 links and a simple conservative approximation

of the rest of the manipulator (the last three links, the end-effec-or and the load), see

Figure 16. The origin and goal for this path are chosen to be the points in free space
closest to the (projection of the) actual origin and g )al Note that these points may

differ from the actual origin and goal in all of the joints. Having found such a path, there
remains finding patl~s in the six-dimensional C-space butween the actual origin (resp.
goal) and the origin (resp. goal) of the path. For all the- e paths. we compute only the

portion of the C-space bounded by the joint values of the origin and goal configurations

This strategy has the effect of nearly decoupling thc degrees of freedom. The six-
dimensional planning is confined to the areas near the origin and goal. Of course. this
strategy will fail to find a path in the worst case. but this strategy has proven to be

reliable and efficient in most practical situations.

7.2 Modifying low-dimensional paths

One alternative approach for searching for a path from ,,nfigurat on (q. . q.,) to

configuration (q,,,.. ., )is the following
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1. Ignore all but the first two joints. Build the free space for this reduced manipula-
tor. Find a sequence of free space regions that contain a path from (9,,n q,,2) to

(qy,,,qg,2). Let 1 - 3.

2. Expand the portion of the free space included in the regions found so far to incor-
porate the link i. That is, quantize the range of values in the region and use them
to compute one dimensional slice projections of the C-space for the first 1 links.

3. Search for a sequence of free space regions that contain a path from (q,.. ,q.,)

to (qg,,.., q9 .1). If i = n then stop; else increment 1 and go to step 2.

This strategy is illustrated graphically in Figure 17. The idea is to focus on rele-
vant sections of the configuration space by first finding paths for successively "longer"

manipulators, starting with a two-link manipulator and going all the way through to a
manipulator with n links.

It is important that at each stage we consider not just a single path of the "shorter"
manipulator, but a sequence of regions that span all the fr,.e-space between a set of
obstacles. The addition of link n will typically change the equir,,d path for the first
n - I links. Therefore the search sI ace should include more han ; single path so s to

avoid the need to perform a backtrac'king sear h.

This ni-thod has I een irnplemerted. The path for the fou degr e-of-free, om m nip-
ulator shown in Figure 18 was found t., this te, 'niqu, The t, hrjiq t, leads t, signi ant

time savings on problems involving more thai, two degrees oi freeoum Of course, -ince
the complete configuration space is not computed. the time to plan a subsequent motion

in the same workspace will be as long as that for the initial motion.

8. Discussion

The main advantages of the algorithm described here are: it is simple to implement.
it is fast for manipulators with few degrees of freedom, it can deal with manipulators

having many degrees of freedom including redundant manipulators. and it can deal with
cluttered environments and non-convex polyhedral obstacles. The total wal-clock time
to compute the C-space obstacles and then plan a path for the two-link example shown
in Figure 4 and 15 is six seconds on a Symbolics 3600 Lisp Machine with floating-point

operations performed in software. These times could be improved by carefully re-coding
the algorithm, but the. are already quite a tit faster than a human using an Interactive

programming ) stem (on-line or off-line).

The main disadvantages of the algorithm are the approximations introduced by the
quantization nai cause the algorithm to miss legal paths in ver. tight environments. and
the rapid growth in execution time with the number of robot joints This last drawback
is probably inherent in any general motion planner. the worst-case time bound will be

exponential in the number of degrees of freedom 19

The performance of this algorithm shows that motion planning agorithmscan te fast
enough and simple enough for practical use. I believe that in mnan applications automatic

p'I%
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(c)

~Figure 17. It is possible to alternate between searching for a path and building the C-space. (a)
• A three degree of freedom problem. Paths for reduced manipulators (b) limit which part of the

"full-dimensional C-space (c) needs to be searched.

moinpann will be moetime effective than interactive off-line programming of

, robots In fact. the planning times will probably be on the order of the times required

~to perform hidden surface elimination in graphics systems.

.1
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(a)

(b)

Figure 18. (a) Initial and goal configurations for a two-dimensional manipulator with four

degrees of freedom. (b) Path found by the algorithm in Section 7.2.

1,01 191I'M:19 :? "
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Figure 19. Joint coordinate system.

Appendix: Computing contact angles for polyhedra

In what follows we assume that we are dealing with a convex polyhedron describing link
k and an obstacle polyhedron (not necessarily convex). The coordinate system is chosen
so that the origin corresponds to the position of revolute joint k and the z axis is aligned
with the joint axis (Figure 19). The coordinate representation of all vectors is relative
to this coordinate system. We assume that the initial position of the link polyhedron
corresponds to qk = 0. We are interested in computing values of qk for which the link is
in contact with the obstacle polyhedron.

Type B contact: vertex of link and face of obstacle

We are given a vertex of the link whose position vector is v and an obstacle face whose
plane equation is n x - d = 0 (n is the plane's outward-facing unit normal). We solve
for the angle qk tha, rotates the vector onto the plane. We obtain the equation for qk by
sub-titutin,, the vertex's I .sition, rotated by qk, into the plane equation and solving for
qk-

The coordinates of the position vector for the rotated vertex are:

v' = (v, cos qk - vY sin qk, v, sin qk + vY cos q, vz)

Substituting into the plane equation yields n-v'-.-d = 0, this yields a simple trigonometric
equation

(n~t, nyvy) cosqk -(nY, n~vy) sin qk -d - n~v, (5)

whose solution is Eq (6).

E qk = co- d atan(n.v, - nv.,n~v, + nvyv.) (6)

Eq (5) is the equation for a type B C-surface 114 . Note that if we let n, = 0, then
Eq. (5) and Eq (1) are essentially identical. The arctangent simply computes the angle
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between the plane normal and the projection of v on the xy plane; this magnitude is
analogous to 0 in the planar case. Eq. (6) and Eq. (2) are also related in the same way.

The left hand side of the Eq. (5) represents the perpendicular distance of the rotated
vertex from the obstacle plane. The sign of the derivative of this quantity with respect
to q can be used to determine whether increasing or decreasing .qk causes a collision.

The orientation constraint simply requires testing whether the other endpoint of all
the edges meeting at the contact vertex are on the outside of the plane. This is done by
substituting the position vector of these endpoints into the left hand side of the plane
equation and testing that the value is positive.

Type A contact: vertex of obstacle and face of link

We are given an obstacle vertex whose position vector is v and a link face whose plane
equation is n - x + d = 0 (n is the plane's outward-facing normal). The solution for 9k is
almost identical to the type A case, the only difference is the sign of the first argument
to the arctangent. This reflects the fact that in type A contact we are treating the link
as stationary and assuming the object is rotating in the opposite direction. This changes
the sign of the sine of the angle.

Type C contact: edge of obstacle and edge of link

This case is substantially more difficult; we follow the derivation in 11. We represent
points on the edges parametrically in t. Therefore, points on the link's edge are repre-
sented by tim + v where v is the position vector of one of the endpoints of the edge and
rn is a vector along the edge (actually the difference vector between the endpoints). The
parameter t, E [0, 11 parameterizes position along the edge. We can represent the vector
along the obstacle edge similarly as ton - w for t0 E [0,1.

As the edge rotates around the z axis, points on Lhe edge trace out circles. The
equation for points on those circles are:

X72 4- V 2 = (m :i _-- V,) 2 +~ (mvtl VV±

Z = mtL - t"

These can be combined by solving the second equation for t1 = . and substituting

into the first to obtain:

V / 2
72 2 =~-zv)S- t- ( - (7)

This is an implicit equation for poin's on the r )tatiort surfacc
The parametric form of t-ie obs:acle edge can be used t, solv, for the iiterse, ion

of the edge with the rotation surfac(

Xr = nlXt o - U .T, y1 ::- njt W- LIl Z --. nzt , - Wd

Substituting into Eq. (7) gives a quadratic equation in t..

62M- tMi
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Define the following terms:

q (n w -. n ,,)M (M2 _, - v,),n, (m'V' 4-

r (W ) - (m2(tM2 -.) - V.r.)2 + (mIw - V W) - )2

The quadratic equation that must be solved for t0 is

2 _

pt0 r, qt, - r = 0

Having t0 we can solve for t, since we know that the z values at contact must be equal.

Therefore.

, nto - WZ - VZ
Mtz

Given values for t, and to, we must first check that they are in the range [0, 1] (the in-edge

constraint), then we can compute points of intersection on each of the edges. Let I be

the position vector of the intersection point on the link edge and o the position of the

intersection point on the object edge. Then,

>qk = atan(lzo1 - IYoz)l1oX + lyov)

Note, however, that we have assumed, when deriving Eq. (7) that m. j 0. In the

not uncommon event that it is, then all the points on the rotation surface have z = v.

and so will the intersectio,. point with the obstacle edge We can use this to obtain

t ~~ -  We can hen lve for : by i:-Ing the f'ct that the contact point on the link

edg( .vili b. on the - rne rcle as lhe coii act poin, on the obsta, le edge:

(IIt, ,) - (m t, - t,,)- -(,, w,) - (t,,t -w )2

But we krom the %,ihue of t,. so this is a quadratic oquation for ti. Given the values of

t, and t,. we can solve for qk as above.

In addition to solving for the value of the contact angle we must compute the deriva-

tive of the distance to the contact as a function of qk. As before, this will determine

whether the contact angle is a potential upper or lower bound for a contact range. Un-

fortunately. this is not as simple as it is for type A and B contacts.

When the two edges are in contact, any motion component perpendicular to both of

them will cause a collision while a component of motion along either edge will not cause

a collision. The direction perpendicular to both edges is simply the cross product of the

two edge vectors (given the link edge rotated to the contact angle):

c(qk) - m(qk) - n

The qk dependence has been indicated explicitly.

One problem here is that we do not knou whether c is outward pointing or not. We

can decide that by , tiing c with a direction known to point into the link. If el and e 2

are the direction vectors of edges meeting the link edge at one of its vertices (see Figure

S11
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Figure 20. The defnition of the e fort = 1, 2, 3, 4

20), then el + e- is a direction pointing into the link volume. Let k = sign(c • (*I + el)),
then kc is the outward-pointing normal we require (see 151 for a careful derivation).

Given the value of k, the type C C-surface equation can be written as 1141:

kc(q). (w - v(q)) = 0 (8)

Differentiating the left hand side with respect to q,, yields

((w#mn - Wm )n, + (d~m1 - v.m.)n - (dm, - V,M,)n,)ksinqi+

((W Imf wm.)n. -- (d,. - vvm.)nv - (dmz - vxmAnz)kcos ,

where d, = v, - w,. If this derivative is negative then increasing qj, will cause a collision.

We are not done yet. We must guarantee that the contact satisfies the orientation
constraint. The following are necessary and sufficient conditions for this [5]:

a = sign(c "el) = sign(c -e2)

8' = sign(c, e3) = sign(c, e4)

These conditions are analogous to the type A and B cases.
Although the derivation of the type C case is a bit involved, the actual amount of

computation involved is not large.
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